MQTT for IoT-based Applications
in Smart Cities *

Dr. Samer Jaloudi **

* Received: 6/1/2018, Accepted: 24/3/2018. DOI: https://doi.org/10.5281/zenodo.2582892
#* Assistant Professor/Al-Quds Open University/Palestine.

1

MQTT for IoT-based Applications in Smart Cities

Dr. Samer Jaloudi

Abstract

This research presents a study on the use
of the MQTT communications protocol for the
Internet of Things in Smart City applications. A
network model is proposed and a typical practical
scenario is developed based on MQTT protocol,
that cope with the requirements of some Smart City
applications, mainly those which use event-based
messages. Many market-available embedded
electronic systems were employed for this
scenario including the inexpensive Wi-Fi platform
ESP8266, Arduino, Raspberry, in addition to
some sensors and actuators. The network model
is chosen based on the TCP/IP model, and the
application layer is totally depending on the MQTT
protocol that employs JavaScript Object Notation
(JSON) to solve the problem of interoperability.
To evaluate the protocol for small-to-medium,
IoT-based, business applications of Smart Cities,
some available free Open Source Software (OSS)
of MQTT servers and clients were compared and
tested against latency over the cloud. The protocol
shows good results for cloud-based, small-to-
medium business applications that depend on
event-based message-oriented communication
paradigms. Since the protocol defines three levels
of quality of service (QoS), the simulations and
the tests were conducted for QoS type zero (QoS0)
to get the best results.

Keywords— CoAP, HTTP, Internet of
Things, JSON, Latency, MQTT, Network Model,
Publish-and-Subscribe, One-to-Many, Smart City
Applications.

MQTT o¥laiyl JsSsigm Suldss
LW o3 G Buiiunall oliggdatlf G
LS Goall A

b e dwlye ddadl 45,60l sda auds

sLaY @o,nY MATT cwall oYLasY JsS 55550
I8l a3 <Al G aall elanks s Internet of Things
lee s, yglasy Network Model a<uin 73 g0

LS puall slinks o olabbal elpn il
Saall Jle L5l Jila, aosias 30l olls Lo s
lig) LalSaall L g SV bl (o mpaall il 5
Fiais [ESP8266 Al jui alill Jamiiy s ,licull
Sl Gany M BLAL (gl Tuata g3y, Yl
SLaie YU ASumll 7 3pas HLaal I B3] .o dudally
b oLkl &y TOPAP s Ladll zisaill e
iy MQTT JsSs3550 e S JShuy aaiad el
Uius Jad JSON ey o Gl Calaal 5 ge, il g
JsS 535,80 anads Jal e .Interoperability Lasl sl
eionl aatas i da giall— -5 il JlaeSU
Jae a3 a8s LS Gaall Jlael olinhs b Loyl
client 55U 3,555 MQTT oliaa a2l 45,8,
elaly OSS [undll £ giss ¢ 5 e seIVEr aslally
e pulsall Ganyl Latency jass luaady Lyl ass
olipll sum @58 JsST sl sell iyl 1
palsa Caligs il Tawgiall— =5 uiall JlacY!
Bl 53 Jlas¥l e watas 3l ciudl e
event-based message-oriented &aall Lo da5L3
LW Gy JsSssesal ol Le .communications
SSLaall ¢yl a3 485 QOS Lonall die 95 (po by sius
Q0S0 Louall e g3 o Js¥! (sstwall Lo Lanilly
S sisall il Jusl e Jgemnll Jad oo cellig

LY @il (CoAP, HTTP :ialiie olalS
il g i Ak 3 sa MQTT L s<ll JSON
ASAl el o landas cpue— Jl—aaly

Introduction

Smart City applications such as smart
transportation, smart healthcare, smart buildings,
smart homes and smart meters require the use
of standard telecommunication protocols and
infrastructures (Jaloudi, 2015). Internet of Things
(IoT) introduces its infrastructure, which is
the Internet or Intranet, as an inexpensive and
available telecommunication infrastructure for
Smart City applications. Information integration,
in such applications, could be realized via Internet-
based standards. Many standard communication
protocols have been proposed for IoT in Smart
City applications, including but not limited to,
Message Queuing Telemetry Transport (MQTT)
(OASIS, 2014 and ISO/IEC, 2016), Constrained
Application Protocol (CoAP) (Shelby et. al,

Palestinian Journal of Technology & Applied Sciences - No. 2 - January 2019

2014), and Hyper Text Transfer Protocol (HTTP)
(Fielding and Reschke, 2014).

The MQTTversion3.1isatelecommunication
protocol released by IBM in 2010 (Locke, 2010).
The new version 3.1.1, became an OASIS standard
on October 2014 (OASIS, 2014) and an ISO/IEC
standard on 2016 (ISO/IEC, 2016). The MQTT is
publish-subscribe messaging transport protocol,
lightweight, open standard, simple to implement
programmatically and loosely couples clients
to the server in asynchronous communication
mechanism. These features make it a good choice
for IoT-based applications and machine-to-
machine (M2M) communications (Locke, 2010).
However, other IoT protocols, namely, CoAP and
HTTP are both request-response protocols, and
tightly-couple clients to servers in synchronous
communication mechanism.

This research paper is concerned with the
evaluation of MQTT protocol for [oT-based Smart
City applications such as smart homes, smart
lighting, smart healthcare, etc. A network model
is proposed based on MQTT over TCP/IP model
as the basis of a practical scenario for Smart City
applications. For seamless information integration
and interoperability, the user data is formatted
in JavaScript Object Notation (JSON) (Bray,
2014). The importance of this study originates
from the idea of using the MQTT protocol for
small-to-medium business, loT-based, Smart City
sectors. Thus, the protocol is simulated against
latency, for many clients exchanging messages
via online-based MQTT servers, available free-
of-charge for testing purposes. In addition, the
protocol is simulated, against losses, on a local
machine using a commercial MQTT server. The
author concluded that the MQTT protocol is
suitable for small-to-medium business, loT-based
applications that exchange messages with online-
based MQTT servers, and for medium-to-big,
IoT-based applications that exchange messages
with local MQTT servers.

The rest of the paper is organized as follows:
The first section introduces a literature review;
latency effects were measured for online and local
MQTT servers in the second section. A network
model is proposed in the third section; followed by
a development of practical scenario in the fourth
section. The fifth section concludes the paper.

Literature Review

Many research papers investigated the IoT
protocols for Smart City sectors. For example,
authors in (Kodali and Soratkal, 2016) have
developed a home automation system based
on MQTT. A room temperature and fire alarm/
suppression [oT service using MQTT on Amazon
web service is built in (Kang et al., 2017). In (Yi
et al., 2016), a mobile health monitoring system
is designed and implemented based on MQTT. A
scalable tracking system for public buses based on
MQTT is developed by the authors of (Lohokare
et. al, 2017), and a smart bus for smart city in
(Sharad et. al, 2017). However, a remote health
monitoring system for smart regions is built in
(Khoi et al, 2015) based on CoAP protocol, and an
interoperable messaging system for [oT healthcare
services is implemented by (Oryema et. al, 2017).

A performance comparison between HTTP
and MQTT is made by (Yokotani and Sasaki,
2016) on required network resources for IoT. In
addition, performance analysis of MQTT, HTTP,
and CoAP is estimated in (Joshi et. al, 2017) for
IoT based monitoring of smart home. Authors in
(Thota and Kim, 2016) discussed and analyzed
the efficiency, usage and requirements of MQTT
and CoAP.

MQTT Messaging Technology

The main features of MQTT include, from
different communication aspects, infrastructure,
architecture, mechanism, model, messaging
pattern, methodology and transmission paradigm.
The protocol uses the client-server communication
architecture, based on the publish-subscribe model,
which is message-oriented protocol. Therefore,
MQTT is event-based, one-to-many protocol. In
addition, it uses the inexpensive and available
communication infrastructure, which is Internet
or Intranet in wire mode (Ethernet — IEEE 802.3)
or wireless mode (Wi-Fi — IEEE 802.11) that may
employ either IPv4 or IPv6 in the network layer.
In the transport layer, the MQTT uses TCP port
number 1883.

On the other hand, and according to the
MQTT protocol specifications (OASIS, 2014), the
MQTT packet have a fixed header of two bytes,
followed by variable length header depending on
topic name length (refer to Figure 2). The fixed

MQTT for IoT-based Applications in Smart Cities

Dr. Samer Jaloudi

header contains five fields. The first field is a four-
bit field and represent the packet type, which is
one of the following packet types: CONNECT,
CONNACK, PUBLISH, PUBACK, PUBREC,
PUBREL, PUBCOMP, SUBSCRIBE, SUBACK,
UNSUBSCRIBE, UNSUBACK, PINGREQ,
PINGRESP, DISCONNECT. The second field is
one-bit, and represents duplicate flag, that must be
set to zero for all quality of service (QoS) level
0 messages, because packet duplication is not
allowed. The third field represents the QoS level,
which takes one of three values; zero (binary 00),
one (binary 01), or two (binary 10), and hence,
binary value (11) is not allowed. The fourth
field is RETAIN. If the RETAIN flag is set to
one, the Server must store the complete message
and its QoS, so that it can be delivered to future
subscribers whose subscriptions match its topic
name. The Remaining Length is the fifth field that
represents the length of the packet.

For example, the frame format shown in
Figure 1 is that of MQTT CONNECT packet.
The Options field exists here because the packet
contains additional fields. While the PUBLISH
packet is similar but with reserved (set to zero)
bits seven to four, the CONNACK packet frame
contains four bytes, of which two bytes represent
the fixed header and another two bytes for the
variable header. However, the DISCONNECT
packet frame contains two bytes only that
represent the fixed header.

Figure 2 illustrates the exchange of data
during the CONNECT packet of MQTT. While
the first client (publisher) produces a message
in four steps, the second client (subscriber)
consumes that message in six steps. The publisher
sends a connect packet (CONNECT), with
username (un) and password (pwd) if required,

to the server (broker) trying to establish a TCP
connection. The server acknowledges the attempt
with (CONNACK) packet, telling the client
(publisher) whether the connection is successfully
established or not. Then the client publishes the
temperature value via a PUBLISH packet, with
temp topic and a value of 22.7 degrees. The
client ends the publishing event with the server
by sending a DISCONNECT packet. Meanwhile,
and in addition to the same aforementioned steps,
the subscriber must SUBSCRIBE to the same
topic (temp) to receive the published messages.
The subscription packet is acknowledged with
SUBACK packet.

Infact, MQTT protocol has low data overhead,
and targets constrained devices and networks. The
protocol is publish-subscribe, one-to-many, TCP-
based message-oriented protocol. Since TCP is
connection-oriented protocol, MQTT is reliable.

The philosophy of MQTT protocol follows
the publish-and-subscribe mechanism and hence
its applications are different from those of CoAP
and HTTP. The publish-and-subscribe mechanism
is event-driven, based on topics, and decoupling
the clients (publishers and subscribers) in
asynchronous communication methodology.
Hence, requirements of many applications of
Smart Cities are fulfilled by MQTT, mainly those
that do not require the sequenced operation of
successive tasks, where the first operation’s result
is the input of the next operation, such as the
closed-loop control. However, for most Smart City
applications, like home automation and healthcare,
it is enough to transfer data between clients using
one-to-many communication mechanism via a
broker (server), where simplicity and information
integration are of high interest. Hence, MQTT
excels in such M2M communications.

Bits | 7 6 5 3 2 11 0 !
Byte | Packet Type Dup Flag QoS Level RETAIN
Byte 2 Remaining Length

Options (variable length header)

Payload (if any)

Fig 1
MQTT frame format of CONNECT packet

Palestinian Journal of Technology & Applied Sciences - No. 2 - January 2019

Latency Measurements

In this section, a survey of MQTT clients
and servers is conducted, to emphasize those
that are available free-of-charge. Many of these
clients and servers were implemented in different
programming languages, suitable for a specific
operating system or a middleware. Depending
upon this survey, free desktop-based and cloud-
based servers were compared, tested, and in two
cases simulated for latency measurements.

Implementations of MQTT
Clients and Servers

Many MQTT servers (brokers) are available,
desktop-based, as well as online-based servers
(cloud-based brokers). However, those support
three levels of QoS, authentication and secured
connections are considered. Port 8883 is reserved
by IANA for secured MQTT connections over SSL
and hence, servers that support such connections
were considered. Another aspect is the support
of web browsers because MQTT is the inability
to pass data to browsers directly. The protocol
WebSockets (WS) works as the bridge between
browsers and MQTT servers.

Table 1 presents a comparison between

CONMNECT {(un, pwd)

CONMACK

PUBLISII {temp, 27.2)

DISCONNECT

iroker) [\

available MQTT servers. The comparison is based
on many factors such as programming language
dependency, whether the server is open source
software (OSS) or not, and whether the server
supports cloud-based testing or not. Accordingly,
the following servers are of high interest:
Mosquitto, HiveMQ, Apache Apollo, VerneMQ,
HBMQTT, BevyWise, Moquette, ThingStud,
Trafero Tstack, and TheThings.

Mosquitto is suitable for testing purposes
and for beginners. A free trial of the desktop
version of HiveMQ is available for free for six
months with limited twenty-five connections, in
addition to a cloud-based version on its website,
available for testing. Apache Apollo is designed
based on the original ActiveMQ. Moquette
is available in standalone application and in
cloud-based. VerneMQ and HBMQTT support
communications over WebSockets protocol
locally. BevyWise offers free trial versions of
client and server. ThingStud is cloud based and
free for non-commercial uses. Trafero/Tstack
introduces its hosting in a platform as a service
paradigm. TheThings is cloud-based and offers
a fifteen-day trial version. These servers were
written (implemented) in different programming
languages, and therefore the used language must
be installed prior to installing the server.

WO Sibscriber

CONMECT {un, pwd)

=
CONMMNACK
SUBSCRIBE {temp)
SUBACK
-

PUBLISH (temp, 27.2)
e

DISCONNECT

Fig 2
Exchange of messages in MQTT protocol

5

MQTT for IoT-based Applications in Smart Cities

Dr. Samer Jaloudi

Some of these online servers (brokers) were
tested for the purposes of this paper including
the HiveMQ online testing server broker.hivemq.
com, the Mosquitto-based web server which is
available online as well on test.mosquitto.org,
the test server introduced by Eclipse iot.eclipse.
org, and that of Moquette broker.moquette.io.
The results are shown in tables 2, 3, 4, and 5. The

measured latency is conducted for QoS0, in order
to get the best results of MQTT. The simulations
of clients that connect to those cloud-based
servers start counting latency from creating the
socket up to closing it including the transmission
of messages and network latency. The test is
repeated five times for each and then the average
is taken, as shown in Table 2, Table 3, Table 4, and
Table 5.

Table 1:

Comparison between MQTT servers

Cloud-based Testing

Server (Broker) Website Sddress WS Port 055 Code
_ , test mosquitto org 80 o
Mosquitto mosquitto.org iot eclipse. org v CIC+
HiveMQ www_hiveme com brni&r.r?lqtt;l:i_shbnard. com 8000 \ Tava
roker hivemq.com
Apache Apollo activemq.apache.org/apollo X - v Java
VerneMQ VEermemq.com X 8888 + Erlang
HEMQTT hbmaqtt readthedocs.10 X 8080 + Pvthon
BevvWise www.bevywise.com mqttserver.com 8000 X Python
Moquette andsel. github.10/moquette broker moquette.io 8080 + Java
ThingStud www.thingstud.10 mqtt.thingstud. 10 8001 X Is
Trafero Tstack hub.docker com'r/trafero/tstack X - v Go
TheThings www.thethings.com mqtt.thethings.1o 1883 I8
Table 2:
Latency of cloud-based server test.mosquitto.org
Test No. Suceessive = Irial — Average
IMessages 1 2 i 4 J =
1 1 261 233 239 256 269 260ms
2 3 1237 1284 1234 1244 1273 1262 ms
3 25 6227 62164 6228 6246 6281 6237 ms
1 30 17343 1748519733 17670 17386 17386ms
3 100 27799 30003 26217 35004 20045 20412 ms
Table 3:
Latency of cloud-based server broker.hivemq.com
Test No. Successive = Irial — Average
messages 1 p 3 4 5 =
1 1 201 195 249 242 2131 224 ms
2 3 1148 1023 1137 1083 042 1072 ms
3 25 5343 3902 34538 3347 3423 3493 ms
4 30 QO07T D371 Q376 9797 0367 S64dms
3 100 19400 19120 19403 13306 18070 191538 ms

Palestinian Journal of Technology & Applied Sciences - No. 2 - January 2019

Table 4:
Latency of cloud-based server iot.eclipse.org
g iv Trial
Test No. Successive m i — Average
messages 1 2 3 4 5 =
1 1 478 490 489 483 481 483 ms
2 5 2372 2369 2370 2379 2371 237Ims
3 25 13995 13964 13981 14003 14002 13989 ms
| 50 2933829201 29301 29293 29371 29319 ms
5 100 G2900 62803 62304 6224962786 6268 Tms
Table 5:
Latency of cloud-based server broker.moquette.io
g i Trial
Test No. Successive = — Average
messages 1 2 i 4 5 =
1 1 376 367 369 371 373 3T7lms
7 3 1766 1766 1761 1788 1782 1773 ms
3 23 10863 10943 10963 10838 10921 10910 ms
- | 50 23087 23573 23060 23143 23637 23304 ms
5 100 3551035287 37285 3721937267 36314 ms
\»ping -n 5 -1 37 test.mosquitto.org
inging test.mosquitto.org [37.187.106.161 with 37 hytes of data:
eply from 37.187.186.16: hytes=37 time=186ms TTL=46
eply from 37.187.186.16: hytezs=37 time=184ms TTL=46
eply from 37.187.186.16: hytes=37 time=183ms TIL=46
eply from 37.187.186.16: hytes=37 time=184ms TTL=46
eply from 37.187.186.16: hytezs=37 time=184ms TTL=46
ing statistics for 37.187.186.16:
Packets: Sent = 5, Received =5, Lost = B (B2 loss),

pproximate round trip times in milli-seconds:

Minimum = 1B@3ms, Maximum = 186ms, Average = 1B@4ms

Fig 3

Result of the ping command

4, and 5, where no lost messages were registered.

As a comparison, the ping command is used
The server broker.hivemq.com has the lowest

to ping the hostname test.mosquitto.org, and the

result is shown in Figure 3. The -n option specifies
the ICMP echo requests, which are five packets
instead of the default of four, and the -1 option sets
the packet size for each request to thirty-seven
bytes instead of the default of thirty-two bytes.

Figure 4 illustrates the results of tables 2, 3,

latency of them all. In fact, these measurements
do not depend only on network latency, but also
on the server itself.

MQTT for IoT-based Applications in Smart Cities Dr. Samer Jaloudi

110
100 ﬂ) . ik
#® y = —— broker hivemg.com
& o 77
¥ 80 7
E /7 = |
= FljD i I e —&—test. mosquitto.org
: SE LA
= 40 A : i
év 0 i brokermoguette.io
— 2 Il-.ll"
F 20 4 - .)
10 4 —s—1ot.eclipse.org
0
0 10000 20000 30000 40000 30000 60000
Time (milliseconds)
Fig 4
Latency of native MQTT messages over clond-based test servers
Table 6:
Tests of commercial MQTT server against losses
Test MNumber of Mlessages Total
- . h Losses
Mo, Clients per Client Mlessages
1 1 100 100 7
2 2 30 100 22
3 3 20 100 32
4 10 10 100 24
3 20 3 100 18
50
:?i
L
=
£
=

0 5 10 15 20 25

Number of Clients
Fig 5
Liost messages of local commercial MOQTT server

A commercial MQTT server is tested locally in evaluation version that allows a maximum of
twenty-five simultaneous connections. One-hundred messages were transmitted successively by many
clients simultaneously to the server, which is located on the same machine (a personal computer, Pentium
Dual Core CPU at 3.2GHz and 2GB RAM), without inter-message delay. The results are shown in
Table 6, and illustrated in Figure 5. With five clients, each transmits twenty messages successively;
the server refused thirty-two messages. However, using an inter-message delay of ten milliseconds,
zero-percent-losses were obtained. This explains the results of the previous experiments executed over
the online-based servers, in tables 2, 3, 4, and 5. The network latency reacts as a delay between the
successive messages, and hence, zero-percent-losses are obtained for the four online cases. Figure 6
illustrates the CPU usage while the commercial server was busy in replying to several clients, each
sends one-thousand successive messages with ten milliseconds inter-message delay.

8

Palestinian Journal of Technology & Applied Sciences - No. 2 - January 2019

Fig 6

CPU usage while the server was busy in replying to thousands
of MQTT messages.

Depending upon the previous comparison
and these results, MQTT protocol is suitable for
medium-to-big IoT business applications that
use LANs and Intranets. However, the protocol
is suitable for small-to-medium IoT business
applications that use unreliable connections,
mainly the Internet that suffers from varying
periods of latency due to infrequent bandwidth
limits. The MQTT’s reliability is based on the
connection-oriented telecommunication protocol,
which is TCP, and the levels of services. Hence,
Internet and wireless LANs (WLANs), which
are unreliable connections, may employ MQTT
in building reliable IoT applications. In the
following sections, network model and topology
were developed that employ the MQTT protocol
in all levels of communicating entities, in order to
build a small IoT application.

Network Model

In the network layer, and due to the
varying bandwidth, unreliable wireless network,
and limited resources of sensor systems, the
communication protocol must be lightweight,
easy to program, flexible, and reliable. Hence, the
MQTT protocol can be used in different levels of
communication infrastructure including sensor
level, hub level, client level, and server level.

Concerning interoperability, MQTT uses
UTF-8 encoding format (in binary representation).
However, the protocol does not specify a way of
object representations, and hence, interoperability
is missed. JavaScript Object Notation (JSON)
introduces good level of interoperability using
text-based ASCII representation of objects
(Bray, 2014). The JSON uses HTTP as a
telecommunication protocol of the application
layer. In this study, the JSON is adopted for the

application layer of MQTT in order to enhance its
interoperability.

The proposed network model is shown in
Figure 7, where user data is formatted in JSON,
transferred over MQTT using TCP port 1883,
then over IP in the network layer, and over Wi-
Fi or Ethernet in the physical layer. hence, in
the application layer, the payload of the MQTT
message, namely the PUBLISH packet, carries
user data formatted in JSON. An example is
illustrated in Figure 8, (a) shows the user data
formatted in JSON, and (b) shows the payload of
the PUBLISH packet formatted in UTF-8.

User Data
Application Layer JSON 777777777777
I
Transport TCP
Network Layer [Pv4, or IPv6
it Fe I

Fig 7

Proposed network model for the practical scenario

The model that appears in Figure 7 is used
in the following section to develop a practical
scenario based on star network-topology.

{"topic":"status/ Temp", "value":20.4}

()

TB22746F 70696322 3A2273 7461 747573 2F 54 656D 70222C 22 76 61 6C 75 65 22 3A 3236 2E 34 7D
(b)

Fig 8

(a) User data formatted in JSON, and (b) Payload of MQTT
PUBLISH packet

Network Topology and Practical
Scenario

Institutions and companies proposed some
IoT hardware and software platforms, such as
Arduino (arduino.cc), BeagelBone (beagleboard.
org) and Raspberry (raspberrypi.org). Many
IoT projects were developed based on Arduino
platforms such as Uno, Mega, Nano, and Yun.

MQTT for IoT-based Applications in Smart Cities

Dr. Samer Jaloudi

Arduino introduces both, the hardware and the
integrated development environment (IDE)
as well. BeagleBone Black (BBB) is another
platform that supports IoT applications via its
onboard Ethernet connection. The BBB, the Yun,
and the Raspberry Pi platforms contain onboard
microprocessor, and hence an embedded-Linux
operating system. An embedded system, supported
with an operating system empowers the platform
with many advantages, including low cost, small
size, portability, and low power consumption.
Such systems are widely used for education and
for small-businesses purposes.

A network topology is developed and its
detailed diagram is shown in Figure 9. The
network is in star mode for both the wired part
and the wireless part, which uses Wi-Fi as a
communication infrastructure. The “Raspberry PI
3” platform is proposed here as the MQTT server
(broker), which is supported with a database
management system, for storing and archiving the
received messages from clients. The inexpensive
Wi-Fi module, which is ESP8266, is used here as
one of the IoT enabling and vital technologies.
The module is microcontroller-based system,
supported with TCP/IP full stack. Therefore, it
enables direct communication between sensors
and actuators, over the Internet or Intranet, with the
MQTT servers (brokers). In addition, developers
can use Arduino IDE to write software programs
for the ESP8266 module. These characteristics
make it a favorable platform for small applications
with limited resources.

In spite of the high power consumption of
Wi-Fi modules, the ESP8266 is used for IoT-
based Smart City applications. Other Arduino
platforms were employed, mainly the inexpensive
Nano platform, which needs an add-on Ethernet
module such as ENC28J60 and the comparatively
expensive Arduino Yun platform, which contains
built-in Ethernet and Wi-Fi, in addition to an
embedded, Linux-based operating system. The
Arduino Yun is a good choice for clustering
MQTT servers, where more than one broker is
needed for load balancing. Here, the Arduino Yun
performs some MQTT brokering functions, with

10

other MQTT-based clients. However, it reacts as
an MQTT client as well for the main server, which
is Raspberry PI 3.

MQTT clients, with user interfaces, such
as the mobile phone, the tablet, and the laptop,
are proposed here for monitoring sensors’
measurements and control actuator-connected
devices. The mobile-based client, subscribes to
temperature (Temp) topic to get the latest sensor’s
readings, and controls the LED by publishing
related commands. The opposite applies to the
ESP8266, to the left, where the client publishes
temperature status events, and to the right, where
the client subscribes to LED control commands.
In fact, MQTT excels also in mobile-based IoT
applications, which requires simplicity and
reliability.

Discussion

In this section, some topics such as scalability,
security, and comparison with other publish-
subscribe protocols, were discussed. Some of
these topics are beyond the scope of this study;
however, they represent important issues related
to the functionality of the MQTT.

MQTT is broker based and may face
performance and real-time response issues as
system-scale increases, especially when the
number of nodes and clients increases. In this case,
MQTT servers, which are managed in clusters,
and load balancers help solve such issues.

To build a trusted IoT-based environment,
security issues must be considered. These
include ways to protect connections, manage
authentication, and ensure data confidentiality.
In fact, the protocol provides simple username
and password authentication, and SSL for data
encryption. Refer to (HiveMQ, 2018) for more
information on securing MQTT.

There are another three publish-and-subscribe
protocols, namely advanced message queuing
protocol (AMQP) (OASIS, 2012), simple text
orientated messaging protocol (STOMP) (Github,

Palestinian Journal of Technology & Applied Sciences - No. 2 - January 2019

2012), and extensible messaging and presence protocol (XMPP) (Saint-Andre, 2011). Among these three
protocols, XMPP is the only IETF standard. However, XMPP is an XML-based protocol developed for
instant messaging, and not lightweight. AMQP is a protocol for the exchange of business transactions
between two parties, which could complement MQTT in higher levels. STOMP is text-based, similar
to HTTP, and not lightweight. Review (Piper, 2013), (Vasters, 2017), and (Luzuriaga et. al, 2015) for
more information and comparisons.

LEL

=R ESFa2 v
ESFR 266 ".||'\-I||r

BT Chient BHITT Clien .f
.‘: i
Temperaiune ||_._||_- "-: :'.'I
i | |
Huiniadily Sefi s PMibilish: I.'I"'"'-'c.-l ; . Eil ol
siatu s Tiom re Subecrile
giaial lum connlLED
AP Coiilin L Pl
L))
LI rereer
Ilr:n' i e Wi "'_""'"'-'“"'"
Publish: MOTT Clieni Yun'LDR
Yun’/LIRES Fublih;
I B L g

Aidinigas [

ENC2EM

(: Ethermet Switch @ BTT Clicni
i i (B
T' Wi-Fi, 364G
; A
Riepherry Pit 1 Subeorib:
iy e
IGTT Semver g s Homs
Pubdish:
il Yo
Bubscribe
slageTemp
Fuhlish TT Ol
T T Clicril
EETIITE S M3
Fig 9
Network topology of a scenario that employs wired and wireless IoT platforms.
Conclusion

The telecommunication protocol, MQTT, is suitable for IoT applications in Smart Cities that have
unreliable connections, mainly wireless networks, and internet. It is lightweight, easy to program,
flexible, and reliable. In addition, it uses the publish-and-subscribe communication mechanism, where
clients are loosely coupled, and are exchanging messages via a broker called, server. Depending upon
the simulations conducted in this article, the MQTT is suitable for small-to-medium IoT-based business

11

MQTT for IoT-based Applications in Smart Cities

Dr. Samer Jaloudi

applications of Smart Cities that use cloud-based
servers (brokers) and for medium-to-big business
applications that rely on LANs and Intranet. For
example, Smart City applications such as energy
monitoring, smart buildings, home automation
and smart healthcare system may employ the
MQTT protocol in all levels of communications.
Hence, in this research article, the protocol is
proposed for a complete practical scenario on
different levels of communication infrastructures
including sensor level, hub level, client level, and
server level.

REFERENCES

1. Bray T. (Ed.) (2014, March). The JavaScript
Object Notation (JSON) Data Interchange
Format. Internet Engineering Task Force,
Request for Comment 7159. Retrieved
December, 03, 2017, from http://tools.ietf.
org/html/rfc7159

Fielding R. and Reschke J. (Eds.) (2014,
June). The Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing.
Internet Engineering Task Force, Request
for Comment 7230. Retrieved December, 03,
2017, from http://tools.ietf.org/html/rfc7230

Github, (2012, October). STOMP
Specifications version 1.2. Github. Retrieved
March, 03, 2018, from https://stomp.github.
o/

HiveMQ, (2018, January). MQTT Security
Fundamentals. HiveMQ. Retrieved March,
03, 2018, from https://www.hivemqg.com/
mgqtt-security-fundamentals/

ISO (2016, July). MQTT 3.1.1
Specifications. International Organization for
Standardization, ISO/IEC 20922. Retrieved
December, 03, 2017, from https://www.iso.
org/standard/69466.html

Jaloudi, Open source software of Smart
City protocols current status and challenges,
international conference on open source
software compntiny (OSSCOM), 2015,
Amman, Jordan, pp. 1-6, 2015.

Joshi J. et. al, Performance enhancement

12

10.

11.

12.

13.

14.

and IoT based monitoring for smart home,
Information Networking (ICOIN), 2017
IEEE International Conference on, Da Nang,
Vietnam, pp. 468-473, 2017

Kang D. H. et. al, Room Temperature
Control and Fire Alarm/Suppression loT
Service Using MQTT on AWS, Platform
Technology and Service (PlatCon), 2017
IEEE International Conference on, Busan,
South Korea, pp. 1-5, 2017

Khoi N. M. et. al, IReHMo: An efficient
IoT-based remote health monitoring system
for smart regions, E-health Networking,
Application & Services (HealthCom), 2015
17th IEEE International Conference on,
Boston, MA, USA, pp. 563-568, 2015

Kodali R. K. and Soratkal S., MQTT based
home automation system using ESP8266,
Humanitarian Technology Conference (R10-
HTC), IEEE Region 10, Agra, India, pp. 1-5,
2016

Locke D., (2010, July). MQ Telemetry
Transport (MQTT) V3.1 Protocol
Specification. IBM. Retrieved December,
03, 2017, from https://www.ibm.com/
developerworks/library/ws-mqtt/

Lohokare et. al, Scalable tracking system
for public buses using IoT technologies,
Emerging Trends & Innovation in ICT
(ICEI), 2017 IEEE International Conference
on, Pune, India, pp. 104-109, 2017

Luzuriaga et. al, A comparative evaluation
of AMQP and MQTT protocols over
unstable and mobile networks, Consumer
Communications and Networking
Conference (CCNC), 2015 12th Annual
IEEE, Las Vegas, NV, USA, pp. 931-936,
Jan., 2015

OASIS (2014, October). MQTT version
3.1.1 Specifications. Organization for the
Advancement of Structured Information
Standards. Retrieved December, 03, 2017,
from http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/0s/mqtt-v3.1.1-0s.pdf

Palestinian Journal of Technology & Applied Sciences - No. 2 - January 2019

15.

16.

17.

18.

19.

20.

21.

OASIS (2012, October). AMQP version
1.0 Specifications. Organization for the
Advancement of Structured Information
Standards. Retrieved March, 11, 2018, from
http://docs.oasis-open.org/amqp/core/v1.0/
os/amqp-core-complete-v1.0-os.pdf

Oryema B. et. al, Design and implementation
of an interoperable messaging system
for IoT healthcare services, Consumer
Communications & Networking Conference
(CCNC), 2017 14th IEEE Annual, Las
Vegas, NV, USA, pp. 45-52, 2017

Piper A., (2013, Feb.). Choosing Your
Messaging Protocol: AMQP, MQTT, or
STOMP. VMware. Retrieved March, 11,
2018, from https://blogs.vmware.com/
vfabric/2013/02/choosing-your-messaging-
protocol-amqgp-mqtt-or-stomp.html

Saint-Andre P., (2011, March). Extensible
Messaging and Presence Protocol (XMPP):
Core. Internet Engineering Task Force,
Request for Comment 6120. Retrieved
March, 11, 2018, from https://tools.ietf.org/
html/rfc6120

Sharad et. al, The smart bus for a smart city
— A real-time implementation, Advanced
Networks and Telecommunications Systems
(ANTS), 2016 IEEE International Conference
on, Bangalore, India, pp. 1-6, 2016

Shelby Z., Hartke K., and Bormann C. (2014,
June). The Constrained Application Protocol
(CoAP). Internet Engineering Task Force,
Request for Comment 7252. Retrieved
December, 03, 2017, from http://tools.ietf.
org/html/rfc7252

Thota P. and Kim Y., Implementation
and Comparison of M2M Protocols for
Internet of Things, Applied Computing and
Information Technology/3rd Intl Conf on
Computational Science/Intelligence and
Applied Informatics/1st Intl Conf on Big
Data, Cloud Computing, Data Science &
Engineering (IEEE ACIT-CSII-BCD), Las
Vegas, NV, USA, pp. 43-48, 2016

13

22.

23.

24.

Yi D. et. al, Design and implementation of
mobile health monitoring system based on
MQTT protocol, Advanced Information
Management, Communicates, Electronic and
Automation Control Conference (IMCEC),
2016 IEEE, Xi’an, China, pp. 1679 - 1682,
2016

Yokotani T. and Sasaki Y., Comparison
with HTTP and MQTT on required network
resources for IoT, Control, Electronics,
Renewable Energy and Communications
(ICCEREC), 2016 IEEE International
Conference on, Bandung, Indonesia, pp. 1-6,
2016

Vasters C., (2017, Jan.). From MQTT to
AMQP and back. A model for integration
of the two most popular open messaging
protocols leveraging the greatest strengths
of both. Vasters. Retrieved March, 11, 2018,
from http://vasters.com/blog/From-MQTT-
to-AMQP-and-back/

