انتهى الإختبار بالتوفيق

استخدم العالم ص الطريقة التالية: بين أن متوازي الأضلاع عبارة عن مثلثين متطابقين مجموع زوايا أي منهما يساوي ١٨٠ درجة.

مريعا.

أربعة أضعاف مساحة المثلث س ص ع ث. في كل المثلثات المتساوية الساقين تكون مساحة المربع س ك ل ع ، أربعة أضعاف مساحة المثلث س ص ع . . فى كل المثلثات تكون مساحة المربع س ك ل ع ، أربعة أضعاف مساحة المثلث. س ص ع . فيما يلى ثلاث خصائص للمثلث س ص ع، الخاصية ١: المثلث س ص ع متساوى الأضلاع. الخاصية ٢: المثلث س ص ع متساوى الساقين الخاصية ٣: المثلث س ص ع فيه زاويتين متساويتين في القياس. فأى الخيارات التالية صحيح؟ الخاصية ۲ تؤدى إلى الخاصية ۳ التي تؤدى بدورها إلى الخاصية ۱. . الخاصية ٢ تؤدى إلى الخاصية ١ التي تؤدى بدورها إلى الخاصية ٣. ت. الخاصية ٣ تؤدى إلى الخاصية ٢ التي تؤدي بدورها إلى الخاصية ١. ث. الخاصية ١ تؤدى إلى الخاصية ٢ التي تؤدي بدورها إلى الخاصية ٣ ج. الخاصية ٣ تؤدى إلى الخاصية ١ التي تؤدى بدورها إلى الخاصية ٢. ١٨. فيما يلى جملتان: الحملة ١: إذا كان الشكل مربعا، فإن قطراه متساويان. الجملة ٢ : إذا تساوى قطرا الشكل الرباعي، يصبح الشكل مربعا. أى من الخيارات التالية صحيح؟ أ. لإثبات صحة الجملة ١، يكفى أن نثبت أن الجملة ٢ صحيحة. . لإثبات صحة الجملة ١، يكفى أن نجد مربعا واحدا يكون قطراه متساويان. ت. لإثبات خطأ الجملة ٢ ، يكفى أن تأتى بشكل رباعى واحد أقطاره متساوية ولا يكون مربعا. ث. لإثبات صحة الجملة ٢ ، يكفى أن نجد شكلا رباعيا قطراه متساويان ويكون

١٦. المثلث س ص ع قائم الزاوية في ص ومتساوي الساقين . تم إنشاء المربع س ك ل ع على وتر المثلث، كما في الشكل التالي:

من هذه المعلومات يمكن أثبات أن مساحة المربع س ك ل ع هي أربعة أضعاف مساحة المثلث س ص ع. ماذا يمكن أن نستنتج من البرهان؟

- أ. في المثلث المرسوم فقط ، يمكننا التأكد أن مساحة المربع س ك ل ع هي أربعة
 أضعاف مساحة المثلث س ص ع.
- ب. في كل المثلثات القائمة تكون مساحة المربع س ك ل ع ، ، أربعة أضعاف مساحة المثلث س ص ع .
- ن. في كل المثلثات القائمة والمتساوية الساقين تكون مساحة المربع س ك ل ع ،

1. 1 ب. ۸ ت. ٥.٨ ث. ٤ ج. لا يمكن معرفتها. ١٢. إذا علمت أن ك ل م ن شكل رباعى، زواياه الأربعة قوائم فأى من الخيارات من (أ) إلى (ج) يكون صحيحا دائما؟ الشكل كلم ن مربعا دائما. ۱. ·· الشكل ك ل م ن مستطيلا دائما. **ت.** الشكل كلم ن معيّنا دائما. ث. الشكل ك ل م ن شبه منحرف دائما. ج. الشكل ك ل م ن رباعي غير منتظم. ١٣. إذا تساوى قطرا المعيّن، فأى من الخيارات من (أ) إلى (ج) يكون صحيحا. دائما؟ أ. تصبح جميع زوايا المعين قوائم. ب. تقسم الأقطار، المعيّن إلى أربعة مثلثات متساوية الساقين. ت. يصبح المعبّن شكلا رباعيا منتظما. ث. يصبح المعيّن مربعا. ج. جميع الخيارات السابقة صحيحة. ۱٤. فيما يلي جملتان: الجملة ١: الشكل س هو مستطيل. الجملة ٢: الشكل س هو متوازى أضلاع. أى من الخيارات التالية صحيح؟ أ. إذا كانت الحملة ٢ صحيحة فإن الحملة ١ صحيحة. ب. إذا كانت الحملة ١ صحيحة فإن الحملة ٢ صحيحة.

غير

فيما يلي أربعة أمثلة:

Appendix 2

اختبار مستويات التفكير الهندسي (فان هيل)

عزيزي الدارس هذا الاختبار لقياس مستوى التفكير الهندسي عندك، قد لا يكون باستطاعتك أن تجيب على جميع الأسئلة، فقط اعمل جهدك، واقرأ البدائل الخمسة التي تلي كل سؤال جيدا ثم اختر البديل الأصح من بينها، بوضع (٧) مقابل رمز اختيارك، لاحظ أن هناك إجابة واحدة صحيحة لكل سؤال.

أى من الأشكال التالية مستطيل؟

أ. ك فقط.
ب. ص وَ ك فقط.
ت. س وَ ص وَ س فقط.
ث. س وَ ك فقط.
جميعها مستطيلات.
٢. أي من الأشكال التالية يمثل مربع؟
أ. م فقط.
ب. ق وَ ل فقط.
ث. ق وَ ل فقط.
خ. حميعها مربعات.

النوع	العبارة					
	أحب العمل في فريق					
	من السهل عليّ توضيح أفكاري للآخرين	٤V				
	أستمتع بالحوار مع أصدقائى	٤٨				
	أستمتع بوجودي ضمن مجموعات دراسية منتجة	٤٩				
	لى على الأقل ثلاثة أصدقاء مقربين	٥.				
	عندما أثق في الآخرين أعطيهم أكبر قدر من مجهودي	٥١				
	اهتم بالقضايا الاجتماعي أو الشخصى الخارجي ومسبباتها	57				
	أحب أن أكون سبباً في مساعدة الآخرين	٥٣				
	أتعاطف مع أصدقائي وأفهم وجهات نظرهم	Oź				
	أستمتع بقضاء الكثير من الوقت في الهواء الطلق	00				
	أربى حيوانا واحدا على الأقل في بيتي	०२				
	أستمتع بالعمل في الحدائق	٥٧				
	أتعلم كثيرا حين أراقب حركات الحيوانات وكيفية تعايشهم في الطبيعة	٥٨				
	أحب جميع أنواع الحيوانات	٥٩				
	أستمتع بدراسة علوم الأحياء والنبات والحيوان	٦.				
	اهتم بالقضايا البيئية في الأماكن المختلفة	٦١				
	أحافظ على الحدائق العامة لأنها من حق الجميع	٦٢				
	أحب زيارة الأماكن المدهشة في الطبيعة	٦٣				
	أستطيع أن أقضى وقتا طويلا في لوحدي	٦٤				
	أحتفظ بدفتر أدوّن فيه مذكراتي وما يحدث معي من أمور	٦٥				
	أحب أن احل مشكلاتي بمفردي	٦٦				
	عندما أعمل بمفردي أنتج أفضل من العمل في مجموعة	٦٧				
	أفهم اختلي بنفسي احيانا	٦٨				
	أفضل أن أذهب في رحلة إلى الطبيعة بمفردي على أن اذهب في رحلة	٦٩				
	إلى شاطئ مزدحم					
	عندما أبدأ مهمة أستطيع الإجابة على كل أسئلتها	٧.				
	عندما أعمل بمفردي أنتج أفضل من العمل في مجموعة	٧١				
	أفهم أفضل عندما أدرس لوحدي	۲۷				

مع الشكر

النوع	العبارة	رقم العبارة			
	أحب حصة الرياضيات				
	أحب الرسم	١٩			
	أحب أن أرى صورا أكثر من الكلمات عندما أقرأ كتابا	۲.			
	أستطيع تخيل الكثير من الأشياء في رأسي	11			
	أحلم كثيرا بالمستقبل	77			
	أفهم دروسي المشروحة بالمخططات والرسومات أكثر من المشروحة بالكلام	۲۳			
	أستطيع أن أبنى أشكالا ذات ثلاثة أبعاد بسهولة بالليغو مثلا	۲٤			
	أحب الأفلام والعروض التي فيها خيال	70			
	أرتب أفكاري بدقة	47			
	أتذكر بسهولة الأشياء المنظمة في رسومات وخرائط	۲۷			
	أجد صعوبة كبيرة في الجلوس بهدوء لمدة تزيد عن ساعتين	77			
	أتوصل إلى أجمل الأفكار حين أكون ماشيا أو راكضا أو عندما أكون ألعب	44			
	أعيش أسلوب حياة نشطا ومليئا بالحركة	۳.			
	أعتقد أن الجسم السليم مهم للعقل السليم	۳١			
	أجد صعوبة كبيرة في الجلوس بهدوء لمدة تزيد عن ساعتين	**			
	أستمتع بالألعاب الرياضية في الهواء الطلق	٣٣			
	أستمتع بالحركة والنشاط المستمر	٣٤			
	استخدم مهاراتي الجسمية وحركات يدي ووجهي لتوضيح أفكاري للآخرين	70			
	أحب لمس الأشياء للتعرف عليها جيدا	٣٦			
	أتحمل الضوضاء والأصوات المرتفعة	٣٧			
	عندما أتعمق بالدراسة أجد نفسي أدندن أو أصنع بيدي أصواتاً لها نغمات	۳۸			
	يمكننى أن أرتب كلمات بحيث تبدو موزونة بسهولة	٣٩			
	أفهم جيداً عندما يكون الحديث له وزناً موسيقياً	٤.			
	أجد نفسي أحيانا وبدون أن أشعر أدندن بمقطوعات موسيقية لإحدى مسلسلات أو الأغاني المشهورة	٤١			
	أستمتع بالعديد من أنواع الموسيقي	٤۲			
	اهتم بالعزف على آلة موسيقية	٤٣			
	أتذكر بسهولة الأشياء الموجودة في قافية موسيقية محددة	££			
	أتذكر القصائد الغنائية بسهولة	٤o			

Appendix1 مؤشر الذكاء ات

تتكون القائمة من (٧٢) مفردة توضح سلوكك الذى تصف به نفسك. إقرأ كلاً منها باهتمام وأجب عنها بوضع علامة (ع) أمام الجملة التي تصفك بدقة وتعكس وجهة نظرك.

إذا لم تكن الجملة تصفك اترك الخانة فارغة ولا تكتب فيها شيئا.

علماً بأنه لا توجد إجابة صحيحة وأخرى خاطئة، وإجابتك ستحاط بالسّريّة التامة وهي لأغراض البحث العلمي فقط.

النوع	العبارة					
	أستمتع بقراءة الكتب	١				
	أتبادل الرسائل مع أصدقائي من خلال البريد الالكتروني	۲				
	أستمتع بحل ألغاز الكلمات المتقاطعة	٣				
	۔ أستمتع بكتابة مذكراتي وقصص من تأليفي	٤				
	أستمتع بإيجاد الفرق في المعنى بين الكلمات المتشابهة واردد كلمات ومصطلحات أسمعها من وسائل الاعلام	٥				
	أهتم باللغات الأجنبية وأحاول تعلمها	٦				
	أحب الاشتراك في مجلات مختلفة	٧				
	يسألني أصدقائي أحيانا عن تفسير معنى عبارات أقولها أو تتناقلها وسائل الإعلام	٨				
	أستمتع بالقراءة عن الفلاسفة القدماء والمعاصرين	٩				
	أحب اللعب بالأرقام	۱.				
	أستمتع بتصنيف الأشياء في مجموعات متجانسة وفقاً لخصائصها المشتركة	11				
	أحب اللعب بالأرقام	١٢				
	أستمتع بتصنيف الأشياء في مجموعات متجانسة وفقاً لخصائصها المشتركة	١٣				
	أتساءل كثيرا عن كيفية عمل الآلات	۱ ٤				
	أحاول تنظيم الأشياء في مخططات ورسوم بيانية	10				
	أستمتع بمختبرات العلوم	١٦				
	أحب ترتيب أموري بشكل منطقي ومتسلسل	17				
	أستطيع حل المسائل الرياضية بسهولة	14				
	أحب ألعاب الكمبيوتر الحسابية	17				

- 11. Halat,E. (2007). Reform-based curriculum & acquisition of the levels. Eurasia Journal of Mathematics, Science and Technology Education. vol.3(1):41-49.
- *12.* Knight, K.C. (2006). An investigation into the change in the van hiele level of understanding geometry of pre-service elementary and secondary mathematics.
- *13.* McMillan, J. H. (2000). Educational Research. Fundamentals for the consumers (3rd ed.). New York: Addison Wesley.
- 14. Professional Handbook for Teachers .(2009). GEOMETRY: EXPLORATIONS AND APPLICATIONS McDougal ,Littell Inc. All rights reserved

References:

- 1. Armstrong, T. (2009). Multiple Intelligences in the Classroom 3rd ed. Alexandria, VA: Association for Supervision and Curriculum Development.
- 2. Burger, W.F., & Shaughnessy, J.M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17, 31-48.
- 3. Crowley, M. (1987). The van Hiele model of development of geometric thought. In M. M. Lindquist, (Ed.), Learning and teaching geometry, K-12 (pp.1–16). Reston, VA: National Council of Teachers of Mathematics.
- 4. Fuys, D., Geddes, D., & Tischler, R. (1988). The Van Hiele model of thinking in geometry among adolescents, Journal for Research in Mathematics Education Monograph No. 3. Reston, VA: National Council of Teachers of Mathematics
- 5. Gardner, Howard (1999). The Disciplined Mind: Beyond Facts And Standardized Tests, The K-12 Education That Every Child Deserves, New York: Simon and Schuster (and New York: Penguin Putnam).
- 6. Gardner, Howard (1983; 1993). Frames of Mind: The theory of multiple intelligences, New York: Basic Books. The second edition was published in Britain by Fontana Press.
- Gardner, H., & Hatch, T. (1989). Multiple intelligences go to school: Educational implications of the theory of multiple intelligences. Educational Researcher, 18(8), 4-9.
- 8. Halat,E. (2008). In-Service Middle and High School Mathematics Teachers: Geometric Reasoning Stages and Gender. The Mathematics Educator. 2008, Vol. 18.
- Halat,E. (2008). Pre-Service Elementary School and Secondary Mathematics Teachers' Van Hiele Levels and Gender Differences. IUMPST: The Journal. Vol 1 (Content Knowledge), May 2008. [www.k-12prep.math.ttu.edu].
- *10.* Hiele, P.M. (1986). Structure and Insight. A Theory of Mathematics Education. Orlando: Academic Press.

DISCUSSION AND CONCLUSION:

MI is an important theory for learners, teachers, and education. It allows learners to realize their strength in learning and gives teachers the opportunity to understand the dynamics of the learners. MI is geared towards the encouragement of students to use their talents and strengths to learn and interact with the content

This study showed that multiple intelligences of QOU learners do vary. This suggests the need for "individual-centered education", with a curriculum tailored to the needs of each learner.

The Van Hiele theory, on the other hand, describes the way in which the understanding of a new topic may develop. This is the notion of stages of learning as means by which the learner may be assisted to seek higher cognitive ground.

The study showed that most QOU learners fell within levels II (Analysis) and III (Ordering). A small portion of them fell within level IV (Deduction) and level V (Rigor), the level at which college students are expected to be (Fuys et al, 1988). This indicates that most of QOU learners were performing at lower (VH) level than expected. So, one can conclude that it is not adequate to rely on a unified mode of instruction.

Using the theory of multiple intelligences in instruction showed that it can facilitate learning in each intelligence area. This fact was supported by the results obtained by the post-test and the pre-test of the second part of the study. The results clearly indicated that instruction developed according to the MI theory improved the (VH) levels of the learners. Learning using a variety of unique experiences allows learners to better understand themselves as lifelong learners.

To conclude, using the theory of multiple intelligences in instructions has several theoretical and practical benefits, it is capable of positively influencing learners' (VH) thinking levels. • For the second research question: *What are the VH levels of thinking of QOU learners?*

The results showed that 68.6% of the 33 learners fall in the third level (Ordering) of (VH) geometric thinking levels or below, while only 31.4% are either in the fourth (Deduction) level or fifth (Rigor). Table 1: shows the distribution of the QOU learners' under (VH) levels.

Level-V (Rigor)	Level-IV (Deduction)	Level-III (Ordering)	Level-II (Analysis)	Level-I (Visualization)	level-0 (Pre- recognition	Level	
9.5	21.9	24.7	29.1	14.7	0.1	%	
31.4%		68.6%					

Table 1 Frequency Table for OOU Math Learners' Van Hiele Levels

• Question three: *What are the differences in VH levels of thinking before and after applying the MI strategy to QOU learners?*

Using experimental design $O_1 X O_2$, at the end of the course, the participants were re-evaluated after the geometry course was completed. The post-test included questions similar to those in the pre-test. Table 4 shows the descriptive statistics and dependent sample, t-test, for the pre-test and the post-test for the participants. The Null and Alternate Hypotheses were:

- H0 : μ_{Post} $\mu_{\text{Pre}} = 0$
- H1 : $\mu_{\text{Post}} \mu_{\text{Pre}} > 0$

Table 2 displays the mean score of the pre-test and the post-test in order to help determine the difference in the mean.

Paired Samples Test (P=0.05)

Table 2

Descriptive statistics and the dependent samples for the pre-test and the post-test

Paired Differences									
		Mean	Std.	Std. Error	95% Confidence Interval of the Difference		Т	df	Sig. (2-tailed)
			Deviation	Mean	Lower	Upper			
Pair 1	post - pret	.39	.55	.096	.19	.59	4.0	32	.000

The post-test mean (3.21) was greater than that of the pre-test mean (2.81). The mean score difference in terms of reasoning stages is statistically significant [t = 4.0), p = 0.00 < 0.05].

Data Sources:

A pre-study assessment of the MI profile of the participants and a pretest to evaluate their VH levels of thinking were carried out *in the first semester of the 2008/2009 academic year.*

The participants took MI instructed-based course identified by Howard Gardner in his book, Frames of Mind: the Theory of Multiple Intelligences (1983.). The MI philosophy guiding instruction was planned to break down the narrowly confined approach of learning, and to accommodate individual interests, abilities, and rates of learning while fostering a climate of teamwork and mutual support. The course was taught for one semester. The goal was to engage the learners in activities of higher thinking skills. Learners were evaluated both independently and in groups by means of tests, assignments and reports.

DATA ANALYSIS:

• For the first research question: *What is the MI profile of QOU learners?*

The results showed that QOU learners have four dominating intelligences which are; the logical-mathematics, linguistic, social and kinesthetic.

the application of the MI Theory in instruction on raising the VH levels of thinking.

STUDY QUESTION:

- What are the dominated MI of the learners?
- What are the levels of VH of the QOU learners?
- What are the differences in VH levels of thinking before and after applying the MI Theory in instruction?

METHODOLOGY:

Participants:

A convenience sampling procedure defined by (McMillan, 2000) was adopted, 33 learners of QOU *(18 males, 15 females)* were selected to participate in this study due to availability. Learners of QOU in Palestine are usually heterogeneous and of mixed-age.

Study Tools:

A MI questionnaire was designed to construct MI profile of the participants. (App 1)

Then, a test was designed according to the model of Van Hiele thinking levels and their description, (App2) and was used as a pre-test and post-test.

The tests were administrated at two QOU study centers to gauge the length and time of the test, and to ensure that the questions reflected the appropriate Van Hiele levels.

Validity and Reliability of the tools:

The MI Questionnaire and VH test were referred by seven QOU education professors and lecturers, then feedback and suggestions were taken into consideration.

The reliability of the tools were measured using Kuder-Richardson (0.87 and 0.92) and were found to be educationally accepted.

unfortunately, college learners, in many cases are found to be performing at levels below the 5th level (Halat, 2006, 2007), (Knight, 2006).

In 1985, a theory of Multiple Intelligences (MI) was developed by Howard Gardner, Professor of education at Harvard University. It suggests that the traditional notion of intelligence, based on I.Q testing, is far too limited. Instead, Dr. Gardner proposed eight different intelligences to account for a broader range of human potential in learners. *These intelligences are* (Armstrong: 2009):-

- Linguistic intelligence ("word smart")
- Logical-mathematical intelligence ("number/reasoning smart")
- Spatial intelligence ("picture smart")
- Bodily-Kinesthetic intelligence ("body smart")
- Musical intelligence ("music smart")
- Interpersonal intelligence ("people smart")
- Intrapersonal intelligence ("self smart")
- Naturalist intelligence ("nature smart")

Dr. Gardner's work around multiple intelligences has had a profound impact on thinking and practice in education (Gardner & Hatch, 1989). It says that our curricula focus mostly on linguistic and logical-mathematical intelligences. However, we should also place equal attention on individuals who show gifts in other intelligences (Gardner, 1999: 41-43).

One of the most remarkable features of the theory of multiple intelligences is how it provides eight different potential pathways for learning. If a learner is having difficulties understanding in the more traditional linguistic or logical ways of instruction, the theory of multiple intelligences suggests several other ways in which the material might be presented to facilitate effective learning.

In this study, the argument about using the MI in college instruction might cause raising VH thinking levels of students will be investigated.

PURPOSE:

The purpose of this study is to identify the dominated MI as well as VH levels of thinking of the participants, then to study the effectiveness of

INTRODUCTION:

Recently Van Hiele's Model of Geometric Thinking (VH), has gained prominence in the study of teaching and learning (Crowley, 1987). Research of Van Hiele and others take into consideration five hierarchy levels (Hiele, 1986). They are not age-dependent but hinge upon rich geometric experiences that are developmentally appropriate. They are (Burger and Shaughnessy: 1986):

- *Level 1 (Visualization):* Students recognize figures by appearance alone, often by comparing them to a known prototype. The properties of a figure are not perceived. At this level, students make decisions based on perception, not reasoning.
- *Level 2 (Analysis):* Students see figures as collections of properties. They can recognize and name properties of geometric figures, but they do not see relationships between these properties. When describing an object, a student operating at this level might list all the properties he/she knows, but cannot distinguish which properties are necessary and which are sufficient to describe the object.
- *Level 3 (Abstraction):* Students perceive relationships between properties and figures. At this level, students can create meaningful definitions and give informal arguments to justify their reasoning. Logical implications and class inclusions, such as squares being a type of rectangle, are understood. The role and significance of formal deduction, however, is not understood.
- *Level 4 (Deduction):* Students can construct proofs, understand the role of axioms and definitions, and know the meaning of necessary and sufficient conditions. At this level, students should be able to construct proofs such as those typically found in a high school geometry class.
- Level 5 (Rigor): Students at this level understand the formal aspects of deduction, such as establishing and comparing mathematical systems. They can also understand the use of indirect proof and proof by contra positive, and can understand non-Euclidean systems (Professional Handbook for Teachers, 2009)

Learners who have reached the fifth level should be able to understand the formal aspects of deduction, and can understand non-Euclidean systems. A college-level course usually functions at this level (Fuys et al.1988). But

Abstract:

The aim of this study is to investigate the effect of multiple intelligencesbased learning on raising the learner's geometric thinking levels according to (Van Hiele) is point of view.

A sample of (33) learners of Al-Quds Open University was selected. Their multiple intelligences and their levels of Van Hiele were investigated before and after taking a course that was developed according to the multiple intelligences theory. The study tools' validity and reliability were tested; the study followed the experimental design $O_1 XO_2$.

The statistical analyses revealed the following results:

- *1.* The research assesses all of the eight multiple intelligences in different proportions.
- 2. There were significant statistical improvements at (α = 0.05) on the mean of (Van Hiele) geometric thinking levels after applying the developed multiple intelligences-based course on the experimental group.

In light of these findings, it is recommended that developing the contents of the curricula and the method of teaching should take into account multiple intelligences and the hierarchical (Van Hiele) geometric thinking levels.

KEY WORDS:

Multiple Intelligences(MI), Van Hiele levels (VH).

ملخص:

هدفت هذه الدراسة إلى الكشف عن فاعلية التعلم وفق نظرية الذكاءات المتعددة في تنمية مستويات التفكير الهندسي (لفان هيل) عند الدارسين. وقد تشكلت عينة البحث من (٣٣) دارساً من دارسي جامعة القدس المفتوحة، مُسحت ذكاءاتهم المتعددة باستخدام استبانة، وقيست مستويات تفكيرهم الهندسية لفان هيل بوساطة اختبار أعد خصيصاً لهذه الدراسة، قبل وبعد إخضاعهم لتجربة تعلم مقرر دراسي طور وفق نظرية الذكاءات المتعددة، وتأكد الباحثان من صدق أدوات الدراسة، وكذلك تقدير ثباتها باستخدام معادلة كودر ريتشاردسون، وأُجري البحث وفق التصميم التجريبي 201

وقد خلصت الدراسة إلى النتائج الآتية:

- أفراد مجموعة البحث يمتلكون الذكاءات المتعددة الثمانية جميعها وبنسب متفاوتة.
- ۲. أظهرت الدراسة تقدماً ملحوظاً وجوهرياً عند مستوى دلالة (α= 0.05) في معدل مستويات التفكير الهندسي (لفان هيل) لدى أفراد مجموعة البحث بعد تطبيق تعلم المقرر المطور، وفق نظرية الذكاءات المتعددة.

وفي ضوء هذه النتائج يوصي الباحثان بضرورة تنظيم المقررات بحيث يتضمن محتواها مستويات التفكير الهندسية والذكاءات المتعددة، وإجراء المزيد من الدراسات حول استخدام نظرية الذكاءات المتعددة في تدريس مواضيع علمية أخرى.

Multiple Intelligences Theory and Its Effect in Raising the Van Hiele Levels of Thinking

Samir Najdi^{*} Randa El Sheikh^{**}

*Education Faculty, Alquds Open University, Palestine **Education Faculty, Alquds Open University, Palestine