
Al-Quds University Journal for Research and Studies - No.8 - October 2006

References

[1] Aloqeili, M. ”The Generalized Slutsky Relations, Journal of Mathematical
Economics 40 (2004), 71-91.

[2] Aloqeili, M., ”On the integrability of Generalized Demand Functions”, Pro-
ceedings of the Third International Palestinian Mathematical Conference,
World Scientific, 2000.

[3] Browning, M. and P.A., Chiappori, “Efficient intra-household allocations:
Ageneral characterization and empirical tests”, Econometrica, 66 (1998),
1241-1278.

[4] Epstein, L. G., “Generalized duality and integrability”, Econometrica, 49
(1981), 655-678.

[5] Chiappori, P.A. and I. Ekeland, ”Individual Excess demands”, Journal of
Mathematical Economics, 40 (2004), 41-57.

[6] Chiappori, P.A. and I. Ekeland, “Disaggregation of excess demand functions
in incomplete markets”, Journal of Mathematical Economics, (1999a) 31,
111-129.

[7] Chiappori, P.A. and I. Ekeland, “Aggregation and market demand, an exte-
rior differential calculus viewpoint”, Econometrica, 67 (1999b), 1435-1457.

[8] Ekeland, I. and L. Nirenberg, ”A Convex Darboux theorem”, Methods and
Applications of Analysis, 9 (2002), 329-344.

[9] Hurwicz, L. “On the problem of integrability of demand curves”, in Prefer-
ences, Utility and Demand. ed. J.S. Chipman et. al. New york: Harcourt
Brace, 174-214, 1971.

[10] Hurwicz, L. and H. Uzawa. “On the problem of integrability of demand
curves ”, in Preferences, Utility and Demand. ed. J.S. Chipman et. al. New
york: Harcourt Brace, 114-148, 1971.

19



Marwan Aloqeili

This equation can be written

∑
i,j,j′,k,k′,l
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j′ = 0 (21)

This equality is satisfied if and only if the coefficients satisfy the following sym-
metry conditions:
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Using the fact that Ti/Tk = λiλk and dividing by TiTk, we get the desired
conditions. This concludes the proof.

We can check easily that conditions (18) imply both (a) and (b) in theorem 1.
If we take i = k = k′ then (18) is equivalent to (a) and when i = k then (18) is
nothing but (b). Moreover, the conditions we obtained above imply the Slutsky
conditions in the single constraint case and the conditions given in Aloqeili [1]
using the homogeneity properties of x and the budget constraint(s) Px = y.

5 Possible applications of the results

In an important article published in the late nineties, Browning and Chiappori
[3] tested the individual demand function model econometrically. For the first
time they got positive results regarding the validity of the Slutsky relations. In
their article, they used data collected in different provinces of Canada. Browning
and Chiappori have shown that Slutsky relations, zero-homogeneity and Walras
law fully characterize the individual demand function. Moreover, they setup a
model for household and validated it econometrically.

In a similar way, the results we got here can be tested econometrically. The
demand functions depend on prices and income which are known variables and
individual demands are observable. The problem in this kind of econometric
test is that we cannot put the people in laboratory conditions. Indeed, we need
to observe their normal behavior in the market. The solution to this problem
is to consider a large country such as Canada in which prices change between
provinces because of different tax regimes. This is indeed the procedure that
was adopted by Browning and Chiappori.
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Theorem 2 Let x(P ) ∈ R
n be a function of class C2 in a neighborhood U of

some point P̄ ∈ R
mn
++ and satisfying Px = 0 and homogeneous of degree zero in

pi for all i ≤ m. Then there exist some functions V and m positive functions
λ1, ..., λm defined on some neighborhood V ⊂ U such that

∂V

∂pi
j

= −λix
j

if and only if there exists a family of positive functions λik, satisfying condition
H, defined on V such that
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where λik = λi

λk
. Moreover, V is quasiconvex with respect to pi for all i if and

only if the restriction of Dpix on {x}⊥ is negative semidefinite.

Proof: The first conditions are the necessary ones. It suffices to show that the
second ones are equivalent to

Ωjj′ll′ ∧ dΩjj′ll′ = 0

To simplify notations, we omit the superscripts of Ti and Tk. In fact, since the
quotient in (16) doesn’t depend on j, j′, l, l′ then the calculation is the same for
any j, j′, l, l′. We can also forget 1

T1
because the exterior products are invariant

for such changes. We thus need to find the conditions such that

Ω ∧ dΩ = 0 (19)

where
Ω =

∑
i

Tiω
i

and
dΩ =

∑
k

Tkdωk +
∑

k

dTk ∧ ωk

Therefore, Ω ∧ dΩ = 0 takes the form

m∑
i,k=1

TiTkωi ∧ dωk +
m∑

i,k=1

TidTk ∧ ωk ∧ ωi = 0 (20)
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Notice that the tensor T is symmetric with respect to the indices jl. We get
the following relation between λi and λk for any i and k

λi =
T lj′jl′

i

T jj′ll′
k

λk (10)

Set k = k0 for some k0 ∈ {1, ..., n}, we can express λi ∀i as a multiple of λk0 .

λi =
T lj′jl′

i

T jj′ll′
k0

λk0 (11)

Take k0 = 1. The decomposition dV = −∑i λiω
i then writes down

dV = − λ1

T jj′ll′
1
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We define, ∀1 ≤ j, j′, l, l′ ≤ n, the 1-form

Ωjj′ll′ =
1
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T lj′jl′
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Our problem now boils down to finding the necessary and sufficient conditions
such that

− 1
λ1
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1
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Which is equivalent to

1
λ1

dV = Ωjj′ll′ ∀1 ≤ j, j′, l, l′ ≤ n (15)

Notice that since
T jj′ll′

i

T lj′jl′
k

=
λi

λk
:= λik (16)

Then the quotient on the left doesn’t depend on j, j′, l, l′. Using Frobinus’
theorem, it follows that

1
λ1

dV = Ωjj′ll′ if and only if Ωjj′ll′ ∧ dΩjj′ll′ = 0

The functions λik defined above have the following homogeneity properties:
Condition H:
The function λik, for any i �= k, is homogeneous of degree −1 in pi, of degree 1
in pk and of degree zero in pk′

, for all k′ �= i and k′ �= k.
Now we are able to give the necessary and sufficient conditions for mathematical
integration.
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Taking the exterior derivative and multiplying by ω1 ∧ ... ∧ ωm, we get

m∑
i=1

λidωi ∧ ω1 ∧ ... ∧ ωm = 0 (6)

Writing dωi explicitly and substituting for ω1, ..., ωm, the above equation writes
down
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Rewrite this equation as follows:

∑
i,j,j′,l

λi

(
∂xj

∂pi
l

− ∂xl

∂pi
j

)
xj′

dpi
l ∧ dpi

j ∧ dpi
j′ ∧ Γi

+
∑

i,j,k,l,j′,l′

(
λi

∂xj

∂pk
l

− λk
∂xl

∂pi
j

)
xj′

xl′dpi
j ∧ dpi

j′ ∧ dpk
l ∧ dpk

l′ ∧ ∆ik = 0 (8)

where Γi is the (m − 1)-form defined by

Γi = ±ω1 ∧ ... ∧ ω̂i ∧ ... ∧ ωm

and ∆ik is the (m − 2)-form given by

∆ik = ±ω1 ∧ ... ∧ ω̂i ∧ .... ∧ ω̂k ∧ ... ∧ ωm

where the hat means that the corresponding 1-form is not included in the prod-
uct. The first summation gives conditions (a), while the second one gives con-
ditions (b).

The signs in the formulas of Γi and ∆ik come from the permutations applied on
the product ω1 ∧ ... ∧ ωm in order to get equation (8). The conditions given in
theorem1 are necessary but not sufficient. In the next section we give the neces-
sary and sufficient conditions for both mathematical and economic integration.

4.1 The sufficient conditions

Now, we want to find the sufficient conditions for mathematical integration. The
necessary conditions enable us to get relations between the functions λ1, ..., λm.
Define the tensor T jj′ll′

k such that (b) writes down

λiT
jj′ll′
k = λkT lj′jl′

i (9)
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We define a family of 1-forms

ωi =
∑

j

xjdpi
j (4)

Therefore, relations (3) and (4) imply that

dV = −
∑

i

λiω
i (5)

Our problem now can be formulated as follows: What are the necessary and
sufficient conditions for the existence of m + 1 functions V, λ1, ..., λm satisfying
(5). This is the mathematical integration problem in our setting. One can easily
get some necessary conditions. Using the first order conditions DpiV = −λix,
we conclude that the following conditions hold, for all i and k, on the subspace
{x}⊥:

(i) The n × n matrix Dpix is symmetric and negative semidefinite.

(ii) For any i and k, the matrices Dpix and Dpkx are proportional; that is,
λi(Dpkx) = λk(Dpix).

The following theorem rewrites conditions (i) and (ii) in a more explicit way:

Theorem 1 Let x(P ) be the solution of problem (P) and λ = (λ1, ..., λm) be the
corresponding Lagrange multipliers, then x and λ satisfy the following necessary
conditions:
(a) ∀i = 1, ...,m
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Proof: Let x be the solution of problem (P). So we can define the 1-forms
ω1, ..., ωm as in (4). Let V be the value function of problem (P), then

dV = −
m∑

i=1

λiω
i
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It follows that the above equality is satisfied if and only if

xi

(
∂xj

∂pk
− ∂xk

∂pj

)
+ xk

(
∂xi

∂pj
− ∂xj

∂pi

)
+ xj

(
∂xk

∂pi
− ∂xi

∂pk

)
= 0 (2)

These are the necessary and sufficient conditions for mathematical integration.
This means that for given C2 function x(p), there exist two functions V and
λ satisfying (1) if and only if x satisfies (2). Notice that, from equation (1),
the restriction of Dpx to {x}⊥ is symmetric and positive semidefinite since V
is quasiconvex. This is exactly the meaning of conditions (2).
It is important to notice that the conditions given in (2) are necessary and suffi-
cient for the existence of V and λ such that DpV = −λx. On the other hand, in
order for V to be quasiconvex and λ > 0, it is necessary and sufficient that the
restriction of Dpx to {x}⊥ be negative semidefinite using the convex Darboux
theorem, [8].
In the next section we will always assume, to simplify notation, that 1 ≤
i, k, k′ ≤ m and 1 ≤ j, j′, l, l′ ≤ n.

4 The multi-constraint case

Now, we consider the following problem

(P)
{

max U(x)
Px ≤ 0

Our goal is to find the conditions satisfied by the solution to this problem. We
suppose that all entries of the m×n matrix are strictly positive and that m < n.
We introduce, as we did above, the value function of this problem

V (P ) = max{U(x) −
m∑

i=1

λi

n∑
j=1

pi
jx

j}

One can easily show that V is quasiconvex and homogeneous of degree zero with
respect to pi, where pi is the ith row of the matrix P .
Let x(P ) be the solution of problem (P) and λ(P ) = (λ1(P ), ..., λm(P )) ∈ R

m
++

be the associated Lagrange multipliers corresponding to the m linear constraints.
We assume that the solution x(P ) satisfies the equality constraints Px(P ) = 0.
It is homogeneous of degree zero with respect to pi, for all i. Moreover, for any
i, λi is homogeneous of degree −1 with respect to pi and homogeneous of degree
zero with respect to pk for all k �= i. Differentiating V with respect to pi

j , we
get

∂V

∂pi
j

= −λix
j (3)
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3 The single constraint case

We study firstly the single constraint case. So, we consider the problem

max U(x)
p.x ≤ 0

where , p ∈ R
n
++ is the vector of prices and U is the utility function that is

of class C3 and strongly quasiconcave2. Introduce the value function, or in
economic terms the indirect utility function

V (p) = max{U(x) − λp.x}

where λ is the Lagrange multiplier. The assumptions on U implies, using the
implicit function theorem, that the solution to this problem x(p) and the asso-
ciated Lagrange multiplier λ(p) are of class C2. We assume that the solution
x(p) ∈ R

n satisfies p.x(p) = 0 and that λ > 0. Notice that both of V (p) and
x(p) are homogeneous of degree zero. Deriving V with respect to p, we get

∂V

∂pi
= −λxi i = 1, ..., n (1)

Define the the differential 1-form

ω =
∑

i

xidpi

Equation (1) implies that
−1
λ

dV (p) = ω

This means that the 1-form ω is proportional to the differential of some function.
It follows that

ω ∧ dω = 0

where dω is the exterior derivative of ω and is given by

dω =
∑
j,k

∂xk

∂pj
dpj ∧ dpk

and ∧ is the exterior (wedge) product. Then

ω ∧ dω =
∑
i,j,k

xi ∂xk

∂pj
dpi ∧ dpj ∧ dpk = 0

2The Hessian matrix of U is negative definite on the subspace orthogonal to its gradient
at each point.
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can rationalized by means of some direct utility function U . This problem was
addressed in [5] by Chiappori and Ekeland in the single constraint case. For the
multi-constraint case, as in Aloqeili [1], it is impossible to retrieve a quasicon-
cave direct utility function. However, we can define a class of functions that is
stable under duality, see Epstein [4]. However, we focus our attention here on
the necessary conditions.
All our analysis and results hold locally since we mainly depend on the local
version of Frobenius’ theorem1. So, all functions are defined in a sufficiently
small neighborhood of some given point P̄ .
In the next section we give some economic problems that motivates our re-
search. We then discuss the single constraint problem and finally we consider
the multi-constraint case.

2 Economic Motivation

Suppose that a consumer has a utility function U , and faces prices p ∈ R
n
++.

His problem is to choose the consumption (normal) bundle that maximizes his
utility among those which are affordable. We suppose that his income is the
market value of an initial endowment ω ∈ R

n
+. Mathematically, the consumer

objective is to solve the following optimization problem:

max U(x)
p.x ≤ p.ω

Let z = x − ω be the individual excess demand where x is the actual demand
function. Then the above problem writes down:

max U(z + ω)
p.z ≤ 0

This problem can be extended easily to the multi-constraint case. Let P be an
m × n matrix whose rows represent the market prices prevailing in m possible
states of nature. Suppose that the consumer has a vector of endowments ω
that is, of course, independent of the states of nature (he has ω now before the
realization of any of the states of nature). The consumer’s problem, in this case,
writes down:

max U(x)
Px ≤ Pω

Rewriting this problem using excess demand function, we get

max U(z + ω)
Pz ≤ 0

We see that, in the two previous examples, the economic problems fall in the
same category as mentioned above.

1Frobenius’ theorem states that dω(p) = 0 in a neighbourhood of some point p̄ if and only
if there is a function f such that ω = f in the same neighbourhood.
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On the characterization of

arg max{U(x) | Px = 0}
Marwan Aloqeili∗

Abstract
In this paper, we use exterior differential calculus notations to get the condi-
tions that characterize the solution to the utility maximization problem subject
to the constraints Px = 0Rm where P is an m × n matrix.

Key Words: Direct utility, Indirect utility, Differential forms, Slutsky matrix.

1 Introduction

In this paper we focus our attention on the application of exterior differential
calculus tools to some optimization problems arising from economics. We will
use the notions of exterior differential calculus to ”characterize” the solutions
of two types of maximization problems: single constraint and multi-constraint
problems. These notions provide very efficient tools to solve such problems.
Hurwicz [5] and [9] was the first who applied differential geometric tools to
economics problems. Then Chiappori and Ekeland [6] and [7] used extensively
these notions to solve many problems in economics. We will see how efficient
are these tools. Moreover, they form an appropriate framework since the results
are invariant under a change of coordinates.
In connection with this article, Aloqeili [1] and [2] solved the problem of charac-
terizing the solution of multi-constraint problems in which the constraints take
the form Px = y, where P is an m × n matrix and x is a vector in R

n
++ rep-

resents a commodity bundle and y ∈ R
m
++ represents income in many states of

nature.
In this article, the constraints have the form Px = 0Rm . Such problems arise in
general equilibrium theory and more precisely in the theory of excess demand
functions and their characterization.
We will not treat the characterization problem in its general form. In particular,
we don’t address the problem of of weather a certain excess demand function

∗Department of Mathematics, Birzeit University, P.O. Box 14 Birzeit, Palestine
maloqeili@birzeit.edu.
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