استخدام بيانات الخزعة المسحوبة لتصنيف أنواع سرطان الثدي عن طريق التعلم الآلي

المؤلفون

  • رامي سليمان خضر جامعة القدس المفتوحة
  • محمد محمود ذويب جامعة القدس المفتوحة
  • يوسف صالح ابو زر جامعة القدس المفتوحة

DOI:

https://doi.org/10.33977/2106-000-008-003

الكلمات المفتاحية:

التعلم الآلي (ML)، ، تصنيفات سرطان الثدي، مصنف شجرة القرار (DTC)، ، آلة الدعم المتجه (SVM)، ، مصنف الغابة العشوائية (RFC)، ، سحب الخزعة

الملخص

الاهداف: يعد سرطان الثدي السبب الرئيسي للوفاة في جميع أنحاء العالم والأهم في فلسطين، يستفيد غالبا من التشخيص المبكر لتحسين نتائج المرضى. ومع ذلك، فإن تشخيص الأورام الصغيرة بدقة يمكن أن يكون صعبًا، مع ارتفاع مخاطر الخطأ البشري. تهدف هذه الدراسة إلى تعزيز تصنيف سرطان الثدي من خلال الاستفادة من خوارزميات التعلم الآلي.المنهجية: قام البحث بتحليل ومقارنة ثلاث تقنيات للتعلم الآلي - مصنف شجرة القرار (DTC) وآلة المتجهات الداعمة   (SVM) ومصنف الغابة العشوائية (RFC) - لتحديد الطريقة الأكثر كفاءة لتصنيف أورام سرطان الثدي. تم تقييم دقة الخوارزميات باستخدام مصفوفة الارتباك على مجموعة بيانات تحتوي على 569 عينة و29 ميزة.النتائج: أظهرت النتائج أن مصنف شجرة القرار (DTC) كان الأكثر نجاحًا، حيث حقق درجات خالية من العيوب بنسبة 100٪ في الدقة والإحكام والحساسية والخصوصية.الخلاصة: وفي الختام، يؤكد البحث على الأداء الممتاز لمصنف شجرة القرار في تصنيف سرطان الثدي، مما قد يحسن بشكل كبير من دقة التشخيص ونتائج المرضى. تشير النتائج إلى أن التشخيص المباشر للمصابين بالسرطان لديه القدرة على أن يكون أداة مفيدة في تقليل الأخطاء التشخيصية وتعزيز التعرف المبكر والرعاية في البيئات الطبية، مما يدفع إلى إجراء دراسات إضافية لتعزيز وتأكيد فعاليته.

السير الشخصية للمؤلفين

رامي سليمان خضر، جامعة القدس المفتوحة

طالب ماجستير

محمد محمود ذويب، جامعة القدس المفتوحة

أستاذ مشارك

يوسف صالح ابو زر، جامعة القدس المفتوحة

أستاذ دكتور

المراجع

REFERENCES

­ Abuzir Y., Abuzir M., and Abuzir A. (2020), Using Artificial Neural Networks (ANN) to Detect the Diabetes, in COMMUNICATION & COGNITION (C&C) Journal, V53, N3-4 pp 103-122, (2020). Ghent, Belgium.

­ Rao, K. M., Saikrishna, G., & Supriya, K. (2023). Data preprocessing techniques: Emergence and selection towards machine learning models - A practical review using HPA dataset. Multimedia Tools and Applications, 82(1), 1-20. https://doi.org/10.1007/s11042-023-15087-5

­ Awad M. M, Khanna A. (2021), A Review of Artificial Intelligence Techniques in Breast Cancer Detection and Diagnosis, Journal of Breast Cancer Research and Treatment, 2021.

­ Bhardwaj A., Tiwari A. (2015). Breast cancer diagnosis using genetically optimized neural network models. Expert Syst. Appl. 2015, 42, 4611–4620.

­ Bokhare, A., & Jha, P. (2023). Machine learning models applied in analyzing breast cancer classification accuracy. IAES International Journal of Artificial Intelligence (IJ-AI), 12(3), 1370. https://doi.org/10.11591/ijai.v12.i3.pp1370-1377

­ Breast Cancer Wisconsin (Diagnostic) Data Set (BCWD 1995), UCI Machine Learning Repository (Center for Machine Learning and Intelligent Systems), Link UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic) Data Set.

­ Budiman, E., Haviluddin, H., Dengan, N., & Kridalaksana, A. H. (2018). Performance of decision tree C4.5 algorithm in student academic evaluation. In Computational Science and Technology (pp. 380-389). Lecture Notes in Electrical Engineering. https://doi.org/10.1007/978-981-10-8276-4_36

­ Centers for Disease Control and Prevention. (n.d.). breast cancer? CDC. https://www.cdc.gov/breast-cancer/index.html (Access June 2024)

­ Chang, M. (2019). Machine learning techniques for personalized breast cancer risk prediction: Comparison with the BCRAT and BOADICEA models. BMC Medical Informatics and Decision Making.

­ Chen, H., Wang, N., Du, X., Mei, K., Zhou, Y., & Cai, G. (2023). Classification Prediction of Breast Cancer Based on Machine Learning. Computational Intelligence and Neuroscience, 2023, 1–9. https://doi.org/10.1155/2023/6530719

­ Cingillioglu, I., & Makalic, E. (2022). A 3-stage classification system for predicting breast cancer diagnosis via FNA biopsy features. https://doi.org/10.21203/rs.3.rs-1982314/v1

­ Dhahri, H. (2019). Automated breast cancer diagnosis based on machine learning algorithms. Hindawi. Retrieved from https://www.hindawi.com/journals/.

­ ENT Health: American Academy of Otolaryngology and Neck Surgery (2024), Fine Needle Aspiration, https://www.enthealth.org/conditions/fine-needle-aspiration/.

­ Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056

­ Ettazi, H., Najat, R., & Abouchabaka, J. (2023). Machine learning for a medical prediction system: Breast cancer detection as a use case. E3S Web of Conferences, 412, 01092. https://doi.org/10.1051/e3sconf/202341201092

­ Fritz, P., Raoufi, R., Dalquen, P., Sediqi, A., Müller, S., Mollin, J., Goletz, S., Dippon, J., Hubler, M., Aeppel, T., Soudah, B., Firooz, H., Weinhara, M., Fabian De Barreto, I., Aichmüller, C., & Stauch, G. (2023). Artificial intelligence assisted diagnoses of fine-needle aspiration of breast diseases: A single-center experience. Journal of Digital Health, 1–11. https://doi.org/10.55976/jdh.2202311501-11

­ Gibbons, C. (2017). Supervised machine learning algorithms can classify open-text feedback of doctor performance with human-level accuracy. Journal of Medical Internet Research.

­ Hassan M. A., R., Basheer, N. M., & Younis, A. K. (2023). A survey: Breast Cancer Classification by Using Machine Learning Techniques. NTU Journal of Engineering and Technology, 2(1). https://doi.org/10.56286/ntujet.v2i1.367

­ Hassan, M., & Sobia, I. (2020). Breast cancer diagnosis using deep learning algorithms by analyzing different classification techniques: A systematic review. Journal of Healthcare Engineering.

­ https://doi.org/10.1109/BioSMART58455.2023.10162052

­ Juanjuan Li, Bradley M. (2021), (NPJ Journal), (Automated and rapid detection of cancer in suspicious axillary lymph nodes in patients with breast cancer), Link (Automated and rapid detection of cancer in suspicious axillary lymph nodes in patients with breast cancer | npj Breast Cancer (nature.com)), July 2021.

­ Kharya S., Dubey D., Soni S. (2013), Predictive Machine Learning Techniques for Breast Cancer Detection, International Journal of Computer Science and Information Technologies (IJCSIT), Vol. 4 (6), 2013, 1023-1028.

­ Li, S., & Margolies, L. R. (2019). Deep learning to improve breast cancer detection on screening mammography. Scientific Reports. Retrieved from https://www.nature.com/.

­ Maglogiannis, I., Zafiropoulos, E., & Anagnostopoulos (2009), An intelligent system for automated breast cancer diagnosis andprognosis using SVM based classifiers, Applied intelligence journal, Volume 30, Issue1, February 2009.

­ Mahmood, M., Imran, M., Satuluri, N., Kuppa, M. R., & Rajesh, V. (2011). An improved CART decision tree for datasets with irrelevant features. In Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing (pp. 539-549).

­ Mandeep R, M., Chandorkar, P., Dsouza, A., & Kazi, N. (2015). Breast cancer diagnosis and recurrence prediction using machine learning techniques. International Journal of Research in Engineering and Technology.

­ McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., ... Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94. https://doi.org/10.1038/s41586-019-1799-6.

­ Ministry of Health – State of Palestine MHPS. (2021). Health Annual Report Palestine.

­ Ong, M.-S. (2012). Automated identification of extreme-risk events in clinical incident reports. Journal of the American Medical Informatics Association.

­ Pandya, R., & Pandya, J. (2015). C5.0 algorithm to improve decision tree with feature selection and reduced error pruning. International Journal of Computer Applications, 117(16), 18-21.

­ Pedregosa, F., Varoquaux, G., Gramfort, A., & others. (2023). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 24, 1-9. https://doi.org/10.5555/3548367.3548368

­ Qaiser, T., & Bhatti, S. H. (2019). Machine learning approaches for breast cancer classification. Expert Systems with Applications.

­ Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1(1), 81-106

­ Krishna R, K., T M, R., Gopal M. G., N., & G, K. (2023). Breast Cancer Classification Using Machine Learning. International Research Journal on Advanced Science Hub, 5(Issue 05S), 88–93. https://doi.org/10.47392/irjash.2023.S012

­ Rokach, L., & Maimon, O. (2008). Data mining with decision trees: Theory and applications. World Scientific Publishing Co.

­ Rui, T., Tianyi, W., Yifan, X., Hongji, S., & Toe, T. T. (2023). Breast image classification based on ResNet and Random Forest multilayer classifier model. 2023 5th International Conference on Bio-Engineering for Smart Technologies (BioSMART), 1–6.

­ Saravanakumar, M., & Kannan, Dr. S. (2023). Pattern Recognition in Breast Cancer Using Machine Learning. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 07(03). https://doi.org/10.55041/IJSREM18255

­ Shafique, R., Rustam, F., Choi, G. S., Díez, I. D. L. T., Mahmood, A., Lipari, V., Velasco, C. L. R., & Ashraf, I. (2023). Breast Cancer Prediction Using Fine Needle Aspiration Features and Upsampling with Supervised Machine Learning. Cancers, 15(3), 681. https://doi.org/10.3390/cancers15030681

­ Sharma, H., & Kumar, S. (2016). A survey on decision tree algorithms of classification in data mining. International Journal of Science and Research, 5(4), 2094-2097.

­ Sheth, D., & Giger, M. L. (2019). Artificial intelligence in the interpretation of breast cancer on MRI. Journal of Magnetic Resonance Imaging. https://doi.org/10.1002/jmri.26878

­ Singh, A. K. (2023). Breast Cancer Classification Using ML on WDBC. In K. Kumar Singh, M. K. Bajpai, & A. Sheikh Akbari (Eds.), Machine Vision and Augmented Intelligence (Vol. 1007, pp. 609–619). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0189-0_48

­ Song, Y. Y., & Ying, L. (2015). Decision tree methods: Applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130.

­ Sugimoto, M., Hikichi, S., Takada, M., & Toi, M. (2021). Machine learning techniques for breast cancer diagnosis and treatment: A narrative review. Annals of Breast Surgery, 7. https://abs.amegroups.org/article/view/7085

­ Tarawneh, O., Otair, M., Husni, M., Abuaddous, Hayfa. Y., Tarawneh, M., & Almomani, M. A. (2022). Breast Cancer Classification using Decision Tree Algorithms. International Journal of Advanced Computer Science and Applications, 13(4). https://doi.org/10.14569/IJACSA.2022.0130478

­ Taznim, S. A., & Ferdous, S. M. (2018). Integrating big data and machine learning techniques for cancer risk prediction. International Conference on Bangla Speech and Language Processing.

­ Tran, H. (2019). A survey of machine learning and data mining techniques used in multimedia systems.

­ Varsha, B., Sneka, P., Tanuja, A., & Shana, J. (2023). Classification Models for Breast Cancer Detection. In A. Chitra, V. Indragandhi, & W. Razia Sultana (Eds.), Intelligent and Soft Computing Systems for Green Energy (1st ed., pp. 255–264). Wiley. https://doi.org/10.1002/9781394167524.ch19

­ Wankhade, Y., Toutam, S., Thakre, K., Kalbande, K., & Thakre, P. (2023). Machine learning approach for breast cancer prediction: A review. In 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC) (pp. 566-570). https://doi.org/10.1109/ICAAIC56838.2023.10141164

­ Wei, Y., Zhang, D., Gao, M., Tian, Y., He, Y., Huang, B., & Zheng, C. (2023). Breast cancer prediction based on machine learning. Journal of Software Engineering and Applications, 16, 348-360. https://doi.org/10.4236/jsea.2023.168018

­ World Health Organization. WHO (2024). Cancer. Retrieved from https://www.who.int/

­ Yue, W., Wang, Z., Chen, H., & Payne, A. M. (2018). Machine learning with applications in breast cancer diagnosis and prognosis. Designs, 2(2), 13. https://doi.org/10.3390/designs 2020013

­ Zeng, C. (2022). An Application of Generalized Linear Models to Fine Needle Aspiration in Breast Cancer. Highlights in Science, Engineering and Technology, 8, 178–184. https://doi.org/10.54097/hset.v8i.1125.

التنزيلات

منشور

2025-06-02

كيفية الاقتباس

خضر ر. س., ذويب م. م., & ابو زر ي. ص. (2025). استخدام بيانات الخزعة المسحوبة لتصنيف أنواع سرطان الثدي عن طريق التعلم الآلي. المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية, 1(8). https://doi.org/10.33977/2106-000-008-003

الأعمال الأكثر قراءة لنفس المؤلف/المؤلفين

عذراً: هذه الإضافة تتطلب تمكين إضافة إحصائيات/تقارير واحدة على الأقل حتى تتمكن من العمل. إن كانت إضافات الإحصائيات لديك تقدم أكثر من مقياس واحد، فعليك أيضاً اختيار مقياس رئيسي منها عند صفحة إعدادات الموقع و/أو عند صفحات الإدارة الخاصة برئيس تحرير المجلة.