Using Technical Indicators and Artificial Neural Networks (ANN) to Predict the Movement of Stock Prices «An Applied Study on the Amman Stock Exchange»

Authors

  • محمد سعد حاووط | Mohamed Saad Hawout Aleppo University
  • إبراهيم عبد الواحد نائب | Ibrahim Abdel Wahed Nayeb Aleppo University

DOI:

https://doi.org/10.33977/1760-005-014-004

Keywords:

Artificial Neural Networks (ANN), WEKA Ada, Stock Market, Multi - Layer Neural Networks, Reverse Propagation, Data Mining, Stock Movement.

Abstract

The need for the existence of specialized institutions contributed to transferring funds from entities that enjoy a surplus from them to entities that suffer from a deficit and that can collect these surpluses and direct them towards investment areas as the traded financial instruments varied. The most important of which was the common stock being the most prevalent in the financial markets where the success of investment and financial decisions depends on the availability of the necessary information for decision makers that rely on logical scientific analysis methods. Therefore, in the fields of artificial intelligence, neuronal networks have emerged as one of the techniques of data mining that helps in discovering previously unknown patterns of large amounts of data, and accessing interpretable models in order to extract knowledge and support the decision - making process.
The research is based on the use of the WEKA tool, using the multi - layer perceptron of the neuronal network, multi - layer network with a reverse spread, and technical indicators for predicting the movement of historical stock prices for one day, based on the modeling of some technical transactions to reach the future price of the share within a day.
The research focuses on the possibility of building a neural network model based on the modeling of some technical transactions to predict the future movement of stock prices.

 

 

 

Author Biographies

محمد سعد حاووط | Mohamed Saad Hawout, Aleppo University

طالب دكتوراه جامعة حلب

إبراهيم عبد الواحد نائب | Ibrahim Abdel Wahed Nayeb, Aleppo University

دكتور استاذ في قسم  بحوث عمليات وبرمجة، كلية الاقتصاد، جامعة حلب

References

المراجع

جواد عبد المجيد - 2015، التنبؤ بحركة الأسهم المتداولة في سوق الأوراق المالية باستخدام تقنيات الذكاء الاصطناعي، أطروحة دكتوراه قسم الإحصاء ونظم المعلومات، جامعة حلب، حلب، سورية.

زيد حياة- 2015، دور التحليل الفني في اتخاذ قرار الاستثمار بالأسهم دراسة تطبيقية في عينة من أسواق المال العربية الأردن، السعودية، وفلسطين، رسالة ماجستير في العلوم الاقتصادية جامعة محمد خيضر، الجزائر.

Paliyawan P. 2015-"Stock Market Direction Prediction Using Data Mining Classification, ARPN Journal of Engineering and Applied Sciences, Thailand.

Ping, H, Tang,L, -2018, Predict stock market trends using improved neural networks using Google Trends, Faculty of Science, University of Northern China, China.

.

حسين عصام، 2008 - أسواق الأوراق المالية (البورصة)، دار أسامة للنشر والتوزيع الكتب الوطنية العدد (1)، عمّان، الأردن.

Mishkin F., Eakins, 2012- Financil Markets and Institutions,7th ED,Pearson, Graduate School of Business, Columbia University,USA.

Schannep J, 2008 – Dow theory for the 21 st Century, Wiley ,

New Jersey, Published by John Wiley & Sons, Inc., Hoboken, New Jersey, Canada.

سرور منال، 2014- العوامل المؤثرة في سوق العملات الأجنبية- دراسة تطبيقية على مؤشر الدولار الأمريكي، رسالة ماجستير جامعة دمشق، سورية.

Dunham, M.H., 2003, data mining introduction and advanced topics, prentice hall.

قطان عبد الباسط- 2017، التنبؤ بفقدان الزبائن لمخطوط المسبقة الدفع باستخدام الشبكات العصبونية، رسالة ماجستير جامعة حلب، حلب ، سورية.

Witten I., et al., 2011, Data Mining Practical Machine Learning Tools and Techniques, book, 3rd ed, Morgan Kaufmann, London.

GUPTA L., et al., 2012, Performance Analysis of Classification Tree Learning Algorithms, Volume 55– No.6, International Journal of Computer Applications, India.

الطويل هالة، 2009- التنقيب عن البيانات 2009، كتاب دار شعاع للنشر والعلوم، سورية.

لدعم قرارات منح القروض 14. ساكت غسان، عداس ضحى،2015-استخدام شجرة القرار

مجلة البحوث جامعة حلب، قسم الإحصاء ونظم المعلومات، كلية الاقتصاد، جامعة حلب، حلب، سورية.

Published

2021-03-23

How to Cite

Mohamed Saad Hawout م. س. ح. |, & Ibrahim Abdel Wahed Nayeb إ. ع. ا. ن. |. (2021). Using Technical Indicators and Artificial Neural Networks (ANN) to Predict the Movement of Stock Prices «An Applied Study on the Amman Stock Exchange». Al-Quds Open University for Administrative & Economic Research & Studies, 5(14). https://doi.org/10.33977/1760-005-014-004