Data Mining Techniques for Prediction of Concrete Compressive Strength (CCS)
DOI:
https://doi.org/10.33977/2106-000-003-006Keywords:
Data Mining, Concrete Compressive Strength (CCS), K-means, EM Algorithm, Kohonen’s Self-Organizing Map (KSOM), Clustering.Abstract
The main aim of this research is to use data mining techniques to explore the main factors affecting the strength of concrete mix. In this research, we are interested in finding some of the factors that influence the high performance of concrete to increase the Concrete Compressive Strength (CCS) mix. We used Waikato’s Knowledge Analysis Environment (WEKA) tool and algorithms such as K-Means, Kohonen’s Self Organizing Map (KSOM) and EM to identify the most influential factors that increase the strength of the concrete mix. The results of this research showed that EM is highly capable of determining the main components that affect the compressive strength of high performance concrete mix. The other two algorithms, K-Means and KSOM, were noted to be an advanced predictive model for predicting the strength of the concrete mix.
Downloads
Published
How to Cite
Issue
Section
License
- The editorial board confirms its commitment to the intellectual property rights
- Researchers also have to commit to the intellectual property rights.
- The research copyrights and publication are owned by the Journal once the researcher is notified about the approval of the paper. The scientific materials published or approved for publishing in the Journal should not be republished unless a written acknowledgment is obtained by the Deanship of Scientific Research.
- Research papers should not be published or republished unless a written acknowledgement is obtained from the Deanship of Scientific Research.
- The researcher has the right to accredit the research to himself, and to place his name on all the copies, editions and volumes published.
- The author has the right to request the accreditation of the published papers to himself.